skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Yuanyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present observational evidence of the impact of triaxiality on radial profiles that extend to 40 Mpc from galaxy cluster centres in optical measurements. We perform a stacked profile analysis from a sample of thousands of nearly relaxed galaxy clusters from public data releases of the Dark Energy Survey and the Dark Energy Camera Legacy Survey. Using the central galaxy elliptical orientation angle as a proxy for galaxy cluster orientation, we measure cluster weak lensing and excess galaxy density axis-aligned profiles, extracted along the central galaxy’s major or minor axes on the plane of the sky. Our measurements show a ≳ 2σ–3σ difference per radial bin between the normalized axis-aligned profiles. The profile difference between each axis-aligned profile and the azimuthally averaged profile ($\sim \pm 10\,\rm per\ cent-20~{{\ \rm per\ cent}}$ along major/minor axis) appears inside the clusters (∼0.4 Mpc) and extends to the large-scale structure regime (∼10–20 Mpc). The magnitude of the difference appears to be relatively insensitive to cluster richness and redshift, and extends further out in the weak lensing surface mass density than in the galaxy overdensity. Looking forward, this measurement can easily be applied to other observational or simulation data sets and can inform the systematics in cluster mass modelling related to triaxiality. We expect imminent upcoming wide-area deep surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time, to improve our quantification of optical signatures of cluster triaxiality.

     
    more » « less
  2. Free, publicly-accessible full text available May 1, 2024
  3. ABSTRACT

    The total masses of galaxy clusters characterize many aspects of astrophysics and the underlying cosmology. It is crucial to obtain reliable and accurate mass estimates for numerous galaxy clusters over a wide range of redshifts and mass scales. We present a transfer-learning approach to estimate cluster masses using the ugriz-band images in the SDSS Data Release 12. The target masses are derived from X-ray or SZ measurements that are only available for a small subset of the clusters. We designed a semisupervised deep learning model consisting of two convolutional neural networks. In the first network, a feature extractor is trained to classify the SDSS photometric bands. The second network takes the previously trained features as inputs to estimate their total masses. The training and testing processes in this work depend purely on real observational data. Our algorithm reaches a mean absolute error (MAE) of 0.232 dex on average and 0.214 dex for the best fold. The performance is comparable to that given by redMaPPer, 0.192 dex. We have further applied a joint integrated gradient and class activation mapping method to interpret such a two-step neural network. The performance of our algorithm is likely to improve as the size of training data set increases. This proof-of-concept experiment demonstrates the potential of deep learning in maximizing the scientific return of the current and future large cluster surveys.

     
    more » « less
  4. ABSTRACT Cosmological constraints from current and upcoming galaxy cluster surveys are limited by the accuracy of cluster mass calibration. In particular, optically identified galaxy clusters are prone to selection effects that can bias the weak lensing mass calibration. We investigate the selection bias of the stacked cluster lensing signal associated with optically selected clusters, using clusters identified by the redMaPPer algorithm in the Buzzard simulations as a case study. We find that at a given cluster halo mass, the residuals of redMaPPer richness and weak lensing signal are positively correlated. As a result, for a given richness selection, the stacked lensing signal is biased high compared with what we would expect from the underlying halo mass probability distribution. The cluster lensing selection bias can thus lead to overestimated mean cluster mass and biased cosmology results. We show that the lensing selection bias exhibits a strong scale dependence and is approximately 20–60 per cent for ΔΣ at large scales. This selection bias largely originates from spurious member galaxies within ±20–60 $h^{-1}\, \rm Mpc$ along the line of sight, highlighting the importance of quantifying projection effects associated with the broad redshift distribution of member galaxies in photometric cluster surveys. While our results qualitatively agree with those in the literature, accurate quantitative modelling of the selection bias is needed to achieve the goals of cluster lensing cosmology and will require synthetic catalogues covering a wide range of galaxy–halo connection models. 
    more » « less
  5. Recently, the occurrence of fog and haze over China has increased. The retrieval of trace gases from the multi-axis differential optical absorption spectroscopy (MAX-DOAS) is challenging under these conditions. In this study, various reported retrieval settings for formaldehyde (HCHO) and sulfur dioxide (SO2) are compared to evaluate the performance of these settings under different meteorological conditions (clear day, haze, and fog). The dataset from 1st December 2019 to 31st March 2020 over Nanjing, China, is used in this study. The results indicated that for HCHO, the optimal settings were in the 324.5–359 nm wavelength window with a polynomial order of five. At these settings, the fitting and root mean squared (RMS) errors for column density were considerably improved for haze and fog conditions, and the differential slant column densities (DSCDs) showed more accurate values compared to the DSCDs between 336.5 and 359 nm. For SO2, the optimal settings for retrieval were found to be at 307–328 nm with a polynomial order of five. Here, root mean square (RMS) and fitting errors were significantly lower under all conditions. The observed HCHO and SO2 vertical column densities were significantly lower on fog days compared to clear days, reflecting a decreased chemical production of HCHO and aqueous phase oxidation of SO2 in fog droplets. 
    more » « less
  6. Abstract We measure the projected number density profiles of galaxies and the splashback feature in clusters selected by the Sunyaev–Zel’dovich effect from the Advanced Atacama Cosmology Telescope (AdvACT) survey using galaxies observed by the Dark Energy Survey (DES). The splashback radius is consistent with CDM-only simulations and is located at 2.4 − 0.4 + 0.3 Mpc h − 1 . We split the galaxies on color and find significant differences in their profile shapes. Red and green-valley galaxies show a splashback-like minimum in their slope profile consistent with theory, while the bluest galaxies show a weak feature at a smaller radius. We develop a mapping of galaxies to subhalos in simulations and assign colors based on infall time onto their hosts. We find that the shift in location of the steepest slope and different profile shapes can be mapped to the average time of infall of galaxies of different colors. The steepest slope traces a discontinuity in the phase space of dark matter halos. By relating spatial profiles to infall time, we can use splashback as a clock to understand galaxy quenching. We find that red galaxies have on average been in clusters over 3.2 Gyr, green galaxies about 2.2 Gyr, while blue galaxies have been accreted most recently and have not reached apocenter. Using the full radial profiles, we fit a simple quenching model and find that the onset of galaxy quenching occurs after a delay of about a gigayear and that galaxies quench rapidly thereafter with an exponential timescale of 0.6 Gyr. 
    more » « less